
 

 

2.8 Interpretability techniques 

Practical guidance – cross-domain 

Authors: Rhys Ward 

One way to provide assurance is to make the ML system being used interpretable. 
Interpretability may help us to: 

• Understand the system retrospectively: to understand, with respect to a harm-
causing action or decision, what went wrong, and why 

• Understand the system prospectively: to predict, mitigate, and prevent future harm-
causing actions or decisions. 

In some sense an algorithm is interpretable if we can understand how it works and/or why it 
makes the decisions that it does make. [17] defines interpretability in the context of ML as 
‘the ability to explain or to present in understandable terms to a human’ but notes that 
what constitutes an explanation is not well-defined. In practice, the term interpretability is 
used to refer to a number of distinct concepts. We want to answer the question ‘to what 
extent does machine learning need to be interpretable to provide assurance?’. To answer 
this question we must decide who needs to understand the system, what they need to 
understand, what types of explanations are appropriate, and when do these explanations 
need to be provided. 

Types of interpretability 

[41] seeks to clarify the myriad different notions of interpretability of ML models in the 
literature - what interpretability means and why it is important. It is noted that 
interpretability is not a monolithic concept and relates to a number of distinct ideas. The 
distinction is often made between methods which are intrinsically transparent and post-hoc 
methods which attempt to explain a model. We identify the following types of 
interpretability. A model/system is: 

• Transparent if we understand how it works (mechanistically, at some level, for some 
part of the process). A transparent model is one which is simple enough for humans 
to understand. We may have transparency at the level of the: 

o Learning algorithm 
o Learned model 
o System logic 
o Parameters or model structures (do they relate to human-understandable 

concepts?) 

• Explainable if we understand why it makes the decisions/predictions that it does 
make. 

o Global explainability techniques approximate the model with a simpler more 
transparent one. This simple approximate model is an explanation. 
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o Local explainability techniques map inputs to outputs and identify important 
inputs. Other methods locally approximate the model. These methods help 
us to answer the question ‘what were the important factors in this decision?’. 

We can also categorise some of the features of these different types of interpretability. Are 
they faithful representations of the model, or approximations? Do they interpret the whole 
model (global) or individual decisions (local)? Transparency is an intrinsic property of a 
model (it is either easy to understand or not, or some degree in between), whereas 
explainability techniques are post-hoc methods which require some extra effort to 
implement. Table 1 summarises this. 

 

Table 1: Features of different types of interpretability 

Interpretability techniques 

There is extensive literature surrounding different techniques to interpret or explain ML 
models or systems. [1] provides a thorough review of current interpretability techniques as 
summarised in Table 2. 

 

Table 2: Summary of interpretability techniques 



Body of Knowledge 2.8 – interpretability techniques 
Copyright © 2019 University of York 

 

Table 2 differentiates between local and global explainability i.e. the interpretability of a 
single decision vs the interpretability of the whole logic of a model. In [41] they also 
differentiate between intrinsic explainability (e.g. transparency) - simple models which are 
inherently easy to understand, and post-hoc explainability - methods that analyse the model 
after training. Post-hoc techniques refer to the global and local techniques described earlier. 

Note that each intrinsic technique is also global. This is because this survey considers 
models which are intrinsically transparent to be transparent globally. In this sense, models 
cannot be transparent (simple enough for us to understand) for some decisions but not 
others. The distinction is also made between techniques which are model specific vs model 
agnostic. A number of other surveys have also been conducted: 

• [5] surveys ML methods as they relate to assurance at each stage of the ML life-cycle 
(Data Management, Model Learning, Model Verification, and Model Deployment). 

• [9] surveys interpretable models differentiating between intrinsically explainable and 
justifiable models/decisions (i.e. transparency vs local explainability). 

• [46] surveys different interpretability techniques and compares them on their 
effectiveness to different user-groups. We will discuss how to evaluate explanations 
in section 3. 

• [18] summarises recent developments in explainable supervised learning. 

• [78] reviews recent studies in understanding neural-network representations and 
learning neural networks with interpretable/disentangled middle-layer 
representations. 

• [48] Seeks to investigate “What makes for a good explanation?” with reference to AI 
systems and takes a psychological approach. It discusses some explanation methods 
(e.g. visualisation, text based). 

• [24] focuses on explainable methods in deep neural architectures, and briefly 
highlights review papers from other subfields. 

• [47] describes some model-agnostic interpretablity methods, their pros and cons, 
and how/when to implement them. 

Comparing the interpretability of different machine learning models 

Table 3 summarises some of the multitude of interpretability techniques in the literature. 
We classify these by the type of interpretability which they capture (see section 1.1) and by 
the type of model which they can be used to interpret. Some techniques can be used on 
multiple models and are referred to as ‘Model Agnostic’. Some methods provide some 
transparency to the system logic without necessarily interpreting the ML model(s) being 
used (e.g. [20]). 
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Table 3: Interpretability techniques for different ML methods 

Some of these methods offer very technical “explanations” which would not be suitable for 
most stakeholders (e.g. doctors, lay-users) and different stakeholders require different 
types of explanation [46]. When explaining algorithmic decisions the format of the 
explanation is key. 

Summary of approach 

1. Define the extent to which the ML system needs to be interpretable and define a set 
of interpretability requirements (e.g. 'Local decisions can be explained to identify the 
cause of accidents after they occur') – see guidance on interpretability requirements. 

2. Define the types of interpretability needed to meet requirements (e.g. 'local 
explainability methods implemented to map inputs to outputs and identify 
important inputs') and consider model selection trade-offs. 

3. Implement suitable interpretability techniques (this may result in choosing a 
transparent model). 

4. Ensure explanations are provided in a suitable format for, and are made available to, 
the audience. 

5. Evaluate explanations (see guidance on interpretability evaluation): 
a. Are they suitable for the audience? 
b. Are they faithful to the system process? 
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